Context Free Grammars & 223

where a$ the following grammars are not S-Grammars.

'S —» aABb S — aABB
A — aAla
A — aA|b B bB | b
B — bB|b — bB|b,
Not an S-Grammar because Not an S-Grammar because of first
of terminal b'in S-production symbol in both the A-productions is a

Example 5.24: Finda Simple Grammar (S-Gramm'ar)'for the regular expression aaa*b + b

For a grammar to be simple grammar, no two production should have the same variable A on the
left and same terminal a as the first symbol on the right hand side of the production and this
termina! should be followed by zero or more. variables. So, the resulting grammar can take the
form | o : ‘

K ' S — aAfb

‘ A — aB

"B — aB|b

If we aﬂply the production

S —» b

then from S we get the string b and the derivation for this is

S :gb-

So, the stnng b can be obtained successfully from S. The first part of the regular expression aaa*b
can be derived using the productions B ~

S — aA

A — aB

B — aB|b

Note that by épplying the first two productions, we get the.panial derivation

S = aA = aaB

using which we have obtained two a’s followed by a variable B. It is clear from the B-production
that B can generate one or more a’s or a b. Thus, the required language is generated by the
grammar. '

Note: The same regﬁlar'expression can be represented using the following grammar also.

224 M Finite Automata and Formal Languages

'S - aAB|b o A
A — aAla
B —-b

’

But, this is not an S-grammar because both the A-productions have a as the first symbol. 4

Example 5.25: Finda Simple Grammar (S-Grammar) to generate the language L = {a"b | n Q 1}

The solution to this problem is very easy and the grammar is shown below:
S — aA

A — aAB|b
B —- b

Note that for the first time the partial string aA is obtaiﬁed by applying the bfoduction ;
S — aA | ‘ |

-Now, the non-terminal A can be replaced by & giving the string ab or it can be feplaced IL'aAB

producing two.a’s followed by AB as shown: ‘ 4,

S = aA = aaAB

If we apply the A production again we get the derivation of the form
S = aA = aAB = aaaABB

It is clear from the above derivation that if » number of a’s are generated, they are folldwph byn
number of non-terminals where the first non terminal is A and the rest are B’s. Firially to
terminate, A is replaced by b and B’s are also replaced by b’s generating n number pf a’s
followed by equal number of b’s. Thus the given grammar produces the language

L={a"%"|n21}

5.8 Applicatioq of context free grammars

The various applications of context free grammars are:

Parsers: In the design of programming languages such as the interpreters or compilers,
formal language such as context free language (obtained from CFG) plays a very importat
using which very efficient translators can be build. Typical languages uses balanced pareg ses
which can be easily expressed using CFG (Note: It is not possible to represent using pegular
expression or FA), The arithmetic and conditional expressions along with various operatefs ¢an
be easily expressed using CFG (see the example 5.22). For example, to define the progr: L ing
languages, unlike the notations we used earlier to define the productions, a special notation ralled

Context Free Grammars &k 225

'BNF (Backus Naur Form) is used. Only the difference is that, all the variables using BNF
notatjons are written within angular brackets ‘<’ and ‘>’ and the terminals without angular

braclxs The arrow mark in the producuon is replaced by the symbols :=. For example, the
prod

1ons
E — E+T|T

T — T*F|F
F — (B)|id

can be written using BNF notation as shown below:

Let
exte!

or

The

Exan

i <exression> := <expression> + <term> | <term>
<term> := <term> * <factor> | factor
<factor> :=(<expression>) | id’

: ;ﬁ take some real examples in programming languages where the BNF notations are

sively used.

ple 5.26: Use BNF notation and describe the while statement in C language. Assume that
statement and oondmon for while are defined already.

w that the syntax of while statement is:

while (condition)

{
}

statements;

while (condition) statement;

BNF notation for the C-while statement is shown below:
" <whl_stmt> := while (<exp>) <stat_list> ‘
- <stat_list> := <stat>; | { <stat>;<stat_list> }
. <stat> = <assign_stat>

le 5.27: Give the BNF notation to write a C program. Provide 6 or 7 productions generally

descyl ing the main program. Assume the rest are defined.

The

yery abstract BNF notation for C program is shown below:
| <program> := main () <block>
© <block> := { <stat_list> }
<stat_list> :=<stat> | <stat><stat_list> | <delr> | <dclr><stat_list>
<dclr> = int <identifier> | char <identifier>

| <stat> = <assign_stat> | <cntrl_stat>

226 H Finite Automata and Formal Languages

- <assign_stat> := <identifier> = <exp>

<exp> i= <exp> + <exp> | <exp> * <exp> | (<exp>) a

<exp> := <exp> - <exp> | <exp>/ <exp> | (identifer) - g

=

and so on. : ' ‘ '

Using the CFG, it is possible to check only the syntax of a language but, not the semantids of a
language. While passing the parameters, we know that the type of actual parameters should
match with type of formal parameters. If the types are different, the syntax still may be cbn'ect
but the semantics are wrong. Using the CFG’s it is not possible to check whether the statement is
semantically correct or not. It is the responsibility of semantic phase to check for the corregtness.
The details of the compiler construction is not the scope of this book and the reader is’
recommended to refer the compiler construction for the details. In C language various {block
structures which are nested using { and } can be easﬂy implemented. The various cbntrol
statements such as for, if, whlle etc, can be represented usmg CFG.

é {
YACC Parser-generator: The UNIX system provides a YACC command using which efﬁ(:lent
parsers can be generated. The input to this command is a CFG but represented using diffferent
notations. In the notation used which is slightly different from that of notations used in CFG, each
production is associated with an action which is the C code to be executed when the parse tree is
created. For example, the grammar I
— E+E|E-E !
— E*E|E/E
- B®]I

— a|b]c o

H

—mmm

- using YACC notation can be written as shown below:

E:1 {.....}
I[E4E {...)
[E“E {...)
[E“E {..)
IEVE {....)]
IE“E (...}
TCEY (o)
I: (...
| ‘b’ {...)
‘c {...)

Note the notations used in this representation when compared with notations used in CFG:

. The most.iam'\\'\at_
o e

%ﬁ) .. s&
gat®’
ML 2 viock of s surrou®
o 10 wTML we ¢80 spee'ty ,
Xt MarkoP Lang 1s € cd
e (e code using any 3

. Hype™
can WO

%
o\

